Saturday, January 31, 2026

NASA Artemis II Moon Rocket: Preflight Updates | Kennedy Space Center

NASA Artemis II Moon Rocket: Preflight Updates | Kennedy Space Center





Artemis II Mission emblem

The Moon is seen shining over the Space Launch System (SLS) and Orion spacecraft, atop the mobile launcher on January 28, 2026. The rocket is currently at Launch Pad 39B at NASA’s Kennedy Space Center in Florida, as teams are preparing for a wet dress rehearsal to practice timelines and procedures for the launch of Artemis II. 

The Artemis II test flight will take Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA and Mission Specialist Jeremy Hansen from the Canadian Space Agency (CSA), around the Moon and back to Earth.

NASA is targeting Monday, Feb. 2, as the tanking day for the upcoming Artemis II wet dress rehearsal as a result of the weather. With this change, the first potential opportunity to launch is no earlier than Sunday, Feb. 8.

Over the past several days, engineers have been closely monitoring conditions as cold weather and winds move through Florida. Managers have assessed hardware capabilities against the projected forecast given the rare arctic outbreak affecting the state and decided to change the timeline. Teams and preparations at the launch pad remain ready for the wet dress rehearsal. However, adjusting the timeline for the test will position NASA for success during the rehearsal, as the expected weather this weekend would violate launch conditions.

While NASA will wait to set a launch date until teams have reviewed the outcome of the wet dress rehearsal, Friday, Feb. 6, and Saturday, Feb. 7, are no longer viable opportunities. Any additional delays would result in a day for day change. 

The Artemis II crew remains in quarantine in Houston. Managers are assessing the timeline for crew arrival.

The opening of a simulated launch window during the wet dress rehearsal begins at 9 p.m. EST, Feb. 2, with the countdown beginning approximately 49 hours prior. NASA will continue to assess weather conditions ahead of the test.

During the current cold weather, engineers have kept Orion powered and have configured its heaters for the colder temperatures. Purges, used to maintain proper environmental conditions for elements of the spacecraft and rocket, including the booster aft skirts, are also configured for the weather.

Learn about NASA's Space Launch System (SLS) rocket: nasa.gov/sls

NASA Artemis II Mission page:
https://www.nasa.gov/mission/artemis-ii/

Follow NASA updates on the Artemis Program blog: https://blogs.nasa.gov/artemis/

Image Credit: NASA/Brandon Hancock
Release Date: Jan. 28, 2026

#NASA #Space #Science #Earth #Moon #ArtemisProgram #ArtemisII #OrionSpacecraft #SLS #SLSRocket #CrewedMissions #Astronauts #DeepSpace #MoonToMars #Engineering #SpaceTechnology #HumanSpaceflight #SolarSystem #SpaceExploration #KSC #MerrittIsland #Florida #UnitedStates #CSA #Canada #STEM #Education

What Can Artemis II Astronauts' Saliva Tell Us? | NASA's Johnson Space Center

What Can Artemis II Astronauts' Saliva Tell Us? | NASA's Johnson Space Center

Saliva can tell us a lot about astronaut health. Before, during, and after their trek around the Moon, Artemis II astronauts will collect saliva samples. These samples will help scientists probe how the immune system reacts to deep space, so that NASA can ensure that humans, rather than viruses, thrive in space as we venture to the Moon, Mars, and beyond! Watch to learn more.


NASA Artemis II Mission page:
https://www.nasa.gov/mission/artemis-ii/

Follow NASA updates on the Artemis Program blog: https://blogs.nasa.gov/artemis/

Video Credit: NASA's Johnson Space Center
Duration: 1 minute, 28 seconds
Release Date: Jan. 30, 2026


#NASA #Space #Science #Earth #Moon #ArtemisProgram #ArtemisII #OrionSpacecraft #SLS #SLSRocket #CrewedMissions #Astronauts #AstronautHealth #Saliva #DeepSpace #MoonToMars #Engineering #SpaceTechnology #HumanSpaceflight #SolarSystem #SpaceExploration #JSC #UnitedStates #CSA #Canada #STEM #Education #HD #Video

Aurora Borealis over Senja Island, Norway | Earth Science

Aurora Borealis over Senja Island, Norway | Earth Science

Photographers Księżyc & Słońce & Łukasz Jankowski: "The largest CME impact event of this cycle occurred on Monday. This photo from Senja Island was taken from that moment."

Also known as the northern lights (aurora borealis) or southern lights (aurora australis), auroras are colorful, dynamic, and often visually delicate displays of an intricate dance of particles and magnetism between the Sun and Earth called space weather. When energetic particles from space collide with atoms and molecules in the atmosphere, they can cause the colorful glow that we call auroras.

Learn more about aurora: 
https://science.nasa.gov/sun/auroras/

Two main types of explosions occur on the sun—solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare that can reach Earth at the speed of light in eight minutes, coronal mass ejections (CMEs) are giant clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, can impact satellites in space or interfere with radio communications. 

Senja (Norwegian) or Sážžá (Northern Sami) is an island in Senja Municipality in Troms county, Norway in northern Europe.

Norway, officially the Kingdom of Norway, is a Nordic country located on the Scandinavian Peninsula in Northern Europe. The country shares a long eastern border with Sweden, and is bordered by Finland and Russia to the northeast.


Image Credit: Księżyc & Słońce & Łukasz Jankowski
Image Details:  Sony A7m4 + Sony 20mm Panorama, 1-second exposure, ISO 800 F 1.4
Photographers' website: https://www.facebook.com/profile.php?id=61585514386493
Date: Jan. 19, 2026

#NASA #Space #Astronomy #Science #Planets #Earth #Aurora #AuroraBorealis #NorthernLights #SolarSystem #Sun #CME #Astrophotography #Astrophotographers #SenjaIsland #Senja #Sážžá #Norway #Norge #UnitedStates #STEM #Education

Friday, January 30, 2026

NASA's SpaceX Crew-12 Training: Behind The Scenes | International Space Station

NASA's SpaceX Crew-12 Training: Behind The Scenes | International Space Station

NASA’s SpaceX Crew-12 mission will see four people embark on a long-duration science expedition to the International Space Station. Jessica Meir and Jack Hathaway are the NASA astronauts supporting the mission. Meir will serve as commander and Hathaway will serve as the Crew-12 pilot. The crew also has two mission specialists, European Space Agency astronaut Sophie Adenot of France and Roscosmos cosmonaut Andrey Fedyaev of Russia. They have trained for their mission across the world, including NASA’s Johnson Space Center in Houston, Texas, SpaceX facilities in Hawthorne, California, and international training locations. Once their Dragon spacecraft arrives at the space station, they will spend their mission conducting science experiments and maintaining the orbiting lab.

Learn more about the mission: https://www.nasa.gov/commercialcrew


Expedition 74 Crew
Station Commander: Mike Fincke (NASA)
JAXA Flight Engineer (Japan): Kimiya Yui
Roscosmos (Russia) Flight Engineers: Oleg Platonov, Sergey-Kud Sverchkov, Sergei Mikaev
NASA Flight Engineers: Zena Cardman, Chris Williams

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada.


Video Credit: NASA's Johnson Space Center
Duration: 31 minutes
Release Date: Jan. 30, 2026


#NASA #Space #ISS #SpaceX #NASASpaceXCrew12 #SpaceXCrew12 #SpaceXDragonSpacecraft #Astronauts #JessicaMeir #JackHathaway #SophieAdenot #France #Europe #ESA #Cosmonauts #AndreyFedyaev #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #InternationalCooperation #Expedition75 #UnitedStates #STEM #Education #HD #Video

United States NOAA Weather Satellites Monitor Massive Winter Storm

United States NOAA Weather Satellites Monitor Massive Winter Storm

From its origins over the Pacific Ocean on January 21, and throughout its impacts on the central and eastern United States from Jan. 24–26, 2026, National Oceanic and Atmospheric Administration (NOAA) satellites closely monitored a massive winter storm that swept across the United States, and brought heavy snow, ice, and dangerous cold. 


Credits: National Oceanic and Atmospheric Administration (NOAA) , National Aeronautics and Space Administration (NASA), The Cooperative Institute for Research in the Atmosphere (CIRA)
Additional Satellite Imagery Courtesy of Cooperative Institute for Meteorological Satellite Studies (CIMSS)
Duration: 2 minutes
Release Date: Jan. 30, 2026

#NASA #Space #Satellites #WeatherSatellites #Science #Planets #Earth #Atmosphere #Weather #Meteorology #Storms #Precipitation #Snow #Ice #ColdTemperatures #CentralUnitedStates #EasternUnitedStates #UnitedStates #ClimateChange #GlobalHeating #EarthObservation #RemoteSensing #GSFC #STEM #Education #HD #Video

Planet Mars Crater Rim Drive | NASA Perseverance Rover View

Planet Mars Crater Rim Drive | NASA Perseverance Rover View

This animation shows the Perseverance Mars rover's point of view during a drive of 807 feet (246 meters) along the rim of Jezero Crater on Dec. 10, 2025, the 1,709th Martian day, or sol, of the mission. Captured over two hours and 35 minutes, 53 Navigation Camera (Navcam) image pairs were combined with rover data on orientation, wheel speed, and steering angle, as well as data from Perseverance's Inertial Measurement Unit, and placed into a 3D virtual environment. The result is this reconstruction with virtual frames inserted about every 4 inches (0.1 meters) of drive progress.


Celebrating 4+ Years on Mars
Mission Name: Mars 2020
Rover Name: Perseverance
Main Job: Seek signs of ancient life and collect samples of rock and regolith (broken rock and soil) for return to Earth.
Launch: July 30, 2020    
Landing: Feb. 18, 2021, Jezero Crater, Mars

NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.

For more about Perseverance: 

For more information on NASA's Mars missions, visit: mars.nasa.gov

Credit: NASA/JPL-Caltech
Duration: 1 minute
Release Date: Jan. 30, 2026

#NASA #Space #Astronomy #Science #Planets #Mars #Astrobiology #Geology #PerseveranceRover #Mars2020 #JezeroCrater #Robotics #SpaceTechnology #SpaceEngineering #MSSS #JPL #Caltech #UnitedStates #STEM #Education #Animation #HD #Video

A Tour of The Lenticular Galaxy NGC 7722 in Pegasus | Hubble

A Tour of The Lenticular Galaxy NGC 7722 in Pegasus | Hubble


This NASA/European Space Agency Hubble Space Telescope picture shows an uncommon galaxy with a striking appearance. This is NGC 7722, a lenticular galaxy located about 187 million light-years away in the constellation Pegasus.

A “lenticular”, meaning “lens-shaped”, galaxy is a type that sits in between the more familiar spiral galaxies and elliptical galaxies. It is also less common than these—partly because when a galaxy has an ambiguous appearance, it can be hard to determine if it is actually a spiral, actually an elliptical galaxy, or something in between. Many of the known lenticular galaxies sport features of spiral and elliptical galaxies. In this case, NGC 7722 lacks the defined arms of a spiral galaxy, while it has an extended, glowing halo and a bright bulge in the center similar to an elliptical galaxy. Unlike elliptical galaxies, it has a visible disc—concentric rings swirl around its bright nucleus. Its most prominent feature, however, is undoubtedly the long lanes of dark red dust coiling around the outer disc and halo.

This new Hubble image, the sharpest yet taken of NGC 7722, brings the impressive dust lanes into sharp focus. Bands of dust like this are not uncommon in lenticular galaxies, and they stand out against the broad, smooth halo of light that typically surrounds lenticular galaxies. The distinctive dust lanes of NGC 7722 are thought to result from a merger with another galaxy in the past, similar to other lenticular galaxies. It is not yet fully understood how lenticular galaxies form, but mergers and other gravitational interactions are thought to play an important part, reshaping galaxies and exhausting their supplies of gas while bringing new dust.

While it does not host as many new, young stars as a spiral galaxy, there is still activity in NGC 7722. In 2020 it was host to the explosion of a star that could be detected from Earth. SN 2020SSF was a Type Ia supernova, an event that occurs when a white dwarf star in a binary system siphons enough mass away from its companion star that it grows unstable and explodes. These explosions output a remarkably consistent level of light. By measuring how bright they appear from Earth and comparing against how bright they really are, it is possible to tell how far away they must be. Type Ia supernovae are one of the best ways to measure distances to galaxies, so understanding exactly how they work is of great importance to astronomers.

Taken with Hubble’s Wide Field Camera 3, this Hubble image was obtained as part of an observing program (#16691, PI: R. J. Foley) that followed up on recent supernovae. SN 2020SSF is not visible in this image, as it was actually taken two years later, when the supernova had long faded. This was on purpose. The aim of the observations was to witness the aftereffects of the supernova and examine its surroundings, which can only be done once the intense light of the explosion is gone. With Hubble’s clear vision, astronomers can search for radioactive material created by the supernova, catalog its neighbors to see how old the star likely was, and look for the companion star it left behind—all from almost 200 million light-years away.

Image Description: A disc-shaped galaxy. It glows brightly at the center and shines a faint white light all around it. The disc is made up of tightly-packed rings of dust, darker and lighter. Wide, long lanes of dark reddish dust cross the galaxy in front of its edge, blocking out a portion of its light; the long strands twist and break apart at each side. A couple of nearby stars and distant galaxies are also visible on the black background.


Credit: ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz), Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA, N. Bartmann (ESA/Hubble)
Acknowledgement: Mehmet Yüksek
Duration: 1 minute
Release Date: Jan. 30, 2026

#NASA #ESA #Astronomy #Space #Science #NGC7722 #LenticularGalaxy #PegasusConstellation #Cosmos #Universe #HubbleSpaceTelescope #HST #Europe #GSFC #STScI #UnitedStates #STEM #Education #HD #Video

Close-up: Lenticular Galaxy NGC 7722 in Pegasus | Hubble

 Close-up: Lenticular Galaxy NGC 7722 in Pegasus | Hubble


This NASA/European Space Agency Hubble Space Telescope picture shows an uncommon galaxy with a striking appearance. This is NGC 7722, a lenticular galaxy located about 187 million light-years away in the constellation Pegasus.

A “lenticular”, meaning “lens-shaped”, galaxy is a type that sits in between the more familiar spiral galaxies and elliptical galaxies. It is also less common than these—partly because when a galaxy has an ambiguous appearance, it can be hard to determine if it is actually a spiral, actually an elliptical galaxy, or something in between. Many of the known lenticular galaxies sport features of spiral and elliptical galaxies. In this case, NGC 7722 lacks the defined arms of a spiral galaxy, while it has an extended, glowing halo and a bright bulge in the center similar to an elliptical galaxy. Unlike elliptical galaxies, it has a visible disc—concentric rings swirl around its bright nucleus. Its most prominent feature, however, is undoubtedly the long lanes of dark red dust coiling around the outer disc and halo.

This new Hubble image, the sharpest yet taken of NGC 7722, brings the impressive dust lanes into sharp focus. Bands of dust like this are not uncommon in lenticular galaxies, and they stand out against the broad, smooth halo of light that typically surrounds lenticular galaxies. The distinctive dust lanes of NGC 7722 are thought to result from a merger with another galaxy in the past, similar to other lenticular galaxies. It is not yet fully understood how lenticular galaxies form, but mergers and other gravitational interactions are thought to play an important part, reshaping galaxies and exhausting their supplies of gas while bringing new dust.

While it does not host as many new, young stars as a spiral galaxy, there is still activity in NGC 7722. In 2020 it was host to the explosion of a star that could be detected from Earth. SN 2020SSF was a Type Ia supernova, an event that occurs when a white dwarf star in a binary system siphons enough mass away from its companion star that it grows unstable and explodes. These explosions output a remarkably consistent level of light. By measuring how bright they appear from Earth and comparing against how bright they really are, it is possible to tell how far away they must be. Type Ia supernovae are one of the best ways to measure distances to galaxies, so understanding exactly how they work is of great importance to astronomers.

Taken with Hubble’s Wide Field Camera 3, this Hubble image was obtained as part of an observing program (#16691, PI: R. J. Foley) that followed up on recent supernovae. SN 2020SSF is not visible in this image, as it was actually taken two years later, when the supernova had long faded. This was on purpose. The aim of the observations was to witness the aftereffects of the supernova and examine its surroundings, which can only be done once the intense light of the explosion is gone. With Hubble’s clear vision, astronomers can search for radioactive material created by the supernova, catalog its neighbors to see how old the star likely was, and look for the companion star it left behind—all from almost 200 million light-years away.

Image Description: A disc-shaped galaxy. It glows brightly at the center and shines a faint white light all around it. The disc is made up of tightly-packed rings of dust, darker and lighter. Wide, long lanes of dark reddish dust cross the galaxy in front of its edge, blocking out a portion of its light; the long strands twist and break apart at each side. A couple of nearby stars and distant galaxies are also visible on the black background.


Credit: ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz), Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA, N. Bartmann (ESA/Hubble)
Acknowledgement: Mehmet Yüksek
Duration: 30 seconds
Release Date: Jan. 30, 2026

#NASA #ESA #Astronomy #Space #Science #NGC7722 #LenticularGalaxy #PegasusConstellation #Cosmos #Universe #HubbleSpaceTelescope #HST #Europe #GSFC #STScI #UnitedStates #STEM #Education #HD #Video

Lenticular Galaxy NGC 7722 in Pegasus: Dark rings & new light | Hubble

Lenticular Galaxy NGC 7722 in Pegasus: Dark rings & new light | Hubble


This NASA/European Space Agency Hubble Space Telescope picture shows an uncommon galaxy with a striking appearance. This is NGC 7722, a lenticular galaxy located about 187 million light-years away in the constellation Pegasus.

A “lenticular”, meaning “lens-shaped”, galaxy is a type that sits in between the more familiar spiral galaxies and elliptical galaxies. It is also less common than these—partly because when a galaxy has an ambiguous appearance, it can be hard to determine if it is actually a spiral, actually an elliptical galaxy, or something in between. Many of the known lenticular galaxies sport features of spiral and elliptical galaxies. In this case, NGC 7722 lacks the defined arms of a spiral galaxy, while it has an extended, glowing halo and a bright bulge in the center similar to an elliptical galaxy. Unlike elliptical galaxies, it has a visible disc—concentric rings swirl around its bright nucleus. Its most prominent feature, however, is undoubtedly the long lanes of dark red dust coiling around the outer disc and halo.

This new Hubble image, the sharpest yet taken of NGC 7722, brings the impressive dust lanes into sharp focus. Bands of dust like this are not uncommon in lenticular galaxies, and they stand out against the broad, smooth halo of light that typically surrounds lenticular galaxies. The distinctive dust lanes of NGC 7722 are thought to result from a merger with another galaxy in the past, similar to other lenticular galaxies. It is not yet fully understood how lenticular galaxies form, but mergers and other gravitational interactions are thought to play an important part, reshaping galaxies and exhausting their supplies of gas while bringing new dust.

While it does not host as many new, young stars as a spiral galaxy, there is still activity in NGC 7722. In 2020 it was host to the explosion of a star that could be detected from Earth. SN 2020SSF was a Type Ia supernova, an event that occurs when a white dwarf star in a binary system siphons enough mass away from its companion star that it grows unstable and explodes. These explosions output a remarkably consistent level of light. By measuring how bright they appear from Earth and comparing against how bright they really are, it is possible to tell how far away they must be. Type Ia supernovae are one of the best ways to measure distances to galaxies, so understanding exactly how they work is of great importance to astronomers.

Taken with Hubble’s Wide Field Camera 3, this Hubble image was obtained as part of an observing program (#16691, PI: R. J. Foley) that followed up on recent supernovae. SN 2020SSF is not visible in this image, as it was actually taken two years later, when the supernova had long faded. This was on purpose. The aim of the observations was to witness the aftereffects of the supernova and examine its surroundings, which can only be done once the intense light of the explosion is gone. With Hubble’s clear vision, astronomers can search for radioactive material created by the supernova, catalog its neighbors to see how old the star likely was, and look for the companion star it left behind—all from almost 200 million light-years away.

Image Description: A disc-shaped galaxy. It glows brightly at the center and shines a faint white light all around it. The disc is made up of tightly-packed rings of dust, darker and lighter. Wide, long lanes of dark reddish dust cross the galaxy in front of its edge, blocking out a portion of its light; the long strands twist and break apart at each side. A couple of nearby stars and distant galaxies are also visible on the black background.


Credit: ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz), Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA
Acknowledgement: Mehmet Yüksek
Release Date: Jan. 30, 2026

#NASA #ESA #Astronomy #Space #Science #NGC7722 #LenticularGalaxy #PegasusConstellation #Cosmos #Universe #HubbleSpaceTelescope #HST #Europe #GSFC #STScI #UnitedStates #STEM #Education

Planet Mars Images: January 24-28, 2026 | NASA's Curiosity & Perseverance Rovers

Planet Mars Images: January 24-28, 2026 | NASA's Curiosity & Perseverance Rovers

Mars 2020 - sol 1756
Mars 2020 - sol 1757
MSL - sol 4691
MSL - sol 4788
MSL - sol 4789
MSL - sol 4788

During late December 2025 and January 2026, Mars and Earth have been on opposite sides of the Sun, blocking radio communications between them. As of late January, the Curiosity and Perseverance Mars rovers are beginning to send raw images once again.

Become a monthly Friends of NASA supporter on our website: 

Friends of NASA (FoN) is an independent non-governmental organization (NGO) dedicated to building international support for peaceful space exploration, commerce, scientific discovery, and STEM education. 
We depend on public donations.
One-time Donations to Friends of NASA (PayPal) accepted here: 

Celebrating 13+ Years on Mars (2012-2025)
Mission Name: Mars Science Laboratory (MSL)
Rover Name: Curiosity
Main Job: To determine if Mars was ever habitable to microbial life. 
Launch: Nov. 6, 2011
Landing Date: Aug. 5, 2012, Gale Crater, Mars

Celebrating 4+ Years on Mars
Mission Name: Mars 2020
Rover Name: Perseverance
Main Job: Seek signs of ancient life and collect samples of rock and regolith (broken rock and soil) for return to Earth.
Launch: July 30, 2020    
Landing: Feb. 18, 2021, Jezero Crater, Mars

For more information on NASA's Mars missions, visit: mars.nasa.gov

Image Credits: NASA/JPL-Caltech/ASU/MSSS
Processing: Kevin M. Gill
Image Release Dates: Jan. 24-28, 2026

#NASA #Space #Astronomy #Science #Planets #Mars #Astrobiology #Geology #CuriosityRover #MSL #MountSharp #GaleCrater #PerseveranceRover #Mars2020 #JezeroCrater #Robotics #SpaceTechnology #SpaceEngineering #MSSS #JPL #Caltech #UnitedStates #CitizenScience #KevinGill #STEM #Education

What Happens When The Sun Blocks Signals from NASA's Mars Rovers & Orbiters?

What Happens When The Sun Blocks Signals from NASA's Mars Rovers & Orbiters?

During late December 2025 and January 2026, Mars and Earth are on opposite sides of the Sun, blocking radio communications between them. Perseverance and the Curiosity Mars rovers will resume sending raw images in late January.

How can you communicate with Mars spacecraft when the Sun is in the way? 

Learn more about 'solar conjunction' in this 60-second video.

About every two years, Earth and Mars wind up on opposite sides of the sun. This is called “solar conjunction.”

It is like being on either side of a huge bonfire. We cannot see Mars, and our landers, rovers, and orbiters cannot see us.

If our spacecraft send back signals, charged particles from the sun could interfere, causing gaps in the data that reach us.

This is not difficult to handle. If something is missing, it can always be resent later. However, in no way do we want to lose data when we send up commands. Receiving a partial command could confuse the spacecraft, putting them at serious risk.

So, mission controllers plan ahead by sending up simple to-do lists, including regular health check ups.

Back home, this break in communications lets team members catch up on other work . . . or take a well-deserved vacation!

Solar conjunction lasts just a few weeks. Then, it is back to normal operations on Earth and on Mars.


Video Credit: NASA's Jet Propulsion Laboratory
Duration: 1 minute
Release Date: March 20, 2013


#NASA #Space #Astronomy #Science #Sun #Planets #Earth #Mars #SolarConjunction #MarsOrbiters #CuriosityRover #MSL #MountSharp #GaleCrater #PerseveranceRover #Mars2020 #JezeroCrater #Robotics #SpaceTechnology #SpaceEngineering #MSSS #JPL #Caltech #UnitedStates #STEM #Education #Animation #HD #Video

Thursday, January 29, 2026

NASA Artemis II Moon Rocket Preflight at Launchpad | Kennedy Space Center

NASA Artemis II Moon Rocket Preflight at Launchpad | Kennedy Space Center







NASA's Artemis II Orion crew spacecraft and Space Launch System (SLS) rocket are at Kennedy Space Center's launch complex 39B ahead of the first of launch of humans to the Moon since 1972. NASA is working toward the launch of the Artemis II mission no earlier than February 6 and no later than April 2026.

The Artemis II test flight will take Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA and Mission Specialist Jeremy Hansen from the Canadian Space Agency (CSA), around the Moon and back to Earth.

Learn about NASA's Space Launch System (SLS) rocket: nasa.gov/sls

Learn about NASA's Orion crew spacecraft:

NASA Artemis II Mission page:
https://www.nasa.gov/mission/artemis-ii/

Follow NASA updates on the Artemis Program blog: 

Image Credit: NASA/Jim Ross
Release Date: Jan. 28, 2026

#NASA #Space #Science #Earth #Moon #ArtemisProgram #ArtemisII #OrionSpacecraft #SLS #SLSRocket #CrewedMissions #Astronauts #DeepSpace #MoonToMars #Engineering #SpaceTechnology #HumanSpaceflight #SolarSystem #SpaceExploration #KSC #MerrittIsland #Florida #UnitedStates #CSA #Canada #STEM #Education

Roman & Webb Space Telescopes: Teamwork | NASA Goddard

Roman & Webb Space Telescopes: Teamwork | NASA Goddard

The James Webb Space Telescope, observing the universe from a million miles away, and the Nancy Grace Roman Space Telescope, set to launch in 2026, are NASA's two latest flagship astrophysics observatories. Although both are studying myriad cosmic objects to answer fundamental questions about our universe, they have distinct designs and capabilities. The universe is such a vast and complex place that it takes many telescopes to thoroughly study it. This video series compares Roman and Webb.

Despite having their observational plans, both telescopes will be stationed in space at the Legrange Point 2, a relatively stable region a million miles away from Earth. From there, both will have an almost unobstructed view of the entire sky and low temperatures to keep their instruments cool.

Roman’s broad and enduring view will mesh perfectly with Webb’s focused gaze. As Roman discovers new wonders throughout the cosmos, Webb can follow up with detailed observations to help astronomers understand them better.


Credits: NASA's Goddard Space Flight Center. 
Producer: Scott Wiessinger (eMITS)
Narrator: Barb Mattson (University of Maryland College Park)
Science advisors: Dominic Benford (NASA/HQ), Rob Zellem (NASA/GSFC)
Writer: Scott Wiessinger (eMITS)
Science writers: Ashley Balzer (eMITS), Francis Reddy (University of Maryland College Park), Public affairs officer, Claire Andreoli (NASA/GSFC)
Animators: Adriana Manrique Gutierrez (eMITS), Scott Wiessinger (eMITS), Krystofer Kim (eMITS), Jenny McElligott (Advocates in Manpower Management, Inc.), Jonathan North (eMITS)
Duration: 2 minutes, 35 seconds
Release Date: Jan. 29, 2026

#NASA #Space #Astronomy #Science #NASARoman #RomanSpaceTelescope #NancyGraceRoman #NASAWebb #WebbTelescope #JWST #SpaceTelescopes #Exoplanets #Planets #SolarSystem #Stars #MilkyWayGalaxy #Galaxies #Cosmos #Universe #Astrophysics #GSFC #STScI #UnitedStates #STEM #Education #HD #Video

NASA Artemis II Moon Mission: Key Stage Illustrations | Lockheed Martin Space

NASA Artemis II Moon Mission: Key Stage Illustrations | Lockheed Martin Space

A 3D illustration of the Lockheed Martin-built Orion spacecraft during NASA's Artemis II mission unfurling its solar arrays.
A 3D illustration of the Lockheed Martin-built Orion spacecraft during NASA's Artemis II mission above the Earth.
A 3D illustration of the Lockheed Martin-built Orion spacecraft during NASA's Artemis II mission following separation from the Interim Cryogenic Propulsion Stage (ICPS).
A 3D illustration of the Lockheed Martin-built Orion spacecraft during NASA's Artemis II mission conducting its trans-lunar injection burn.
A 3D illustration of the Lockheed Martin-built Orion spacecraft during NASA's Artemis II mission with the Earth rising above the lunar surface.
A 3D illustration of the Lockheed Martin-built Orion spacecraft during re-entry at the end of NASA's Artemis II mission.
Artemis II Mission emblem

NASA's Orion crew spacecraft and Space Launch System (SLS) rocket are at launch complex 39B at Kennedy Space Center ahead of the first of launch of humans to the Moon since 1972. NASA is working toward the launch of the Artemis II mission no earlier than February 6 and no later than April 2026.

The Artemis II test flight will take Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA and Mission Specialist Jeremy Hansen from the Canadian Space Agency (CSA), around the Moon and back to Earth.

Learn more about NASA's Orion spacecraft built by Lockheed Martin:

Learn about United Launch Alliance's ICPS:

NASA Artemis II Mission page:
https://www.nasa.gov/mission/artemis-ii/

Follow NASA updates on the Artemis Program blog: 

Image Credit: Lockheed Martin Space
Release Date: Jan. 29, 2026

#NASA #Space #Science #Earth #Moon #ArtemisProgram #ArtemisII #OrionSpacecraft #LockheedMartin #ICPS #ULA #SLS #SLSRocket #CrewedMissions #Astronauts #DeepSpace #MoonToMars #Engineering #SpaceTechnology #HumanSpaceflight #SolarSystem #SpaceExploration #JSC #UnitedStates #CSA #Canada #Art #Illustrations #STEM #Education

Supercomputer Traces Neutron Stars’ Magnetic Tango | NASA Goddard

Supercomputer Traces Neutron Stars’ Magnetic Tango | NASA Goddard

New simulations performed on NASA’s Pleiades supercomputer are providing scientists with the most comprehensive look yet into the interacting magnetic structures around city-sized neutron stars in the moments before they crash. The team identified potential signals emitted during the stars’ final moments that may be detectable by future observatories.  Just before orbiting neutron stars merge, the magnetic fields and plasma around them, called magnetospheres, become entangled. The new simulations studied the last several orbits before the merger, when the magnetospheres undergo rapid and dramatic changes, and modeled potentially observable high-energy signals.  Neutron star mergers produce a particular type of GRB (gamma-ray burst), the most powerful class of explosions in the cosmos. They create near-light-speed jets that emit gamma rays, powerful ripples in space-time called gravitational waves, and a so-called kilonova explosion that forges heavy elements like gold and platinum. So far, only one event, observed in 2017, has connected all three phenomena.  

Neutron stars pack more mass than our Sun into a ball about 15 miles (24 kilometers) across, roughly the length of Manhattan Island in New York City. Born out of supernova explosions, neutron stars can spin dozens of times a second and wield some of the strongest magnetic fields known, up to 10 trillion times stronger than a refrigerator magnet. This is strong enough to directly transform gamma-rays into electrons and positrons and rapidly accelerate them to energies far beyond anything achievable in particle accelerators on Earth.  In the simulations, performed on the Pleiades supercomputer at NASA’s Ames Research Center in California’s Silicon Valley, the linked magnetospheres behave like a magnetic circuit that continually rewires itself as the stars orbit. Field lines connect, break, and reconnect while currents surge through plasma moving at nearly the speed of light, and the rapidly varying fields can accelerate particles to high energies.   

The team ran hundreds of simulations of a system of two orbiting neutron stars, each with 1.4 solar masses. The goal was to explore how different magnetic field configurations affected the way electromagnetic energy light in all of its forms left the coalescing system. The research shows that the emitted light varies greatly in brightness and is not distributed evenly, so what a far-away observer might detect depends greatly on their perspective on the merger. In addition, the way the signals strengthen as the stars get closer and closer depends on the relative magnetic orientations of the neutron stars.  If next-generation gravitational wave observatories can provide an early warning, future ground-based gamma-ray telescopes will be able to team up with space-based X-ray and gamma-ray telescopes to begin searching for the pre-merger emission seen in these simulations. Routine observation of events like these using two different “messengers”—light and gravitational waves—will provide a major leap forward in understanding this class of GRBs.


Video Credit: NASA's Goddard Space Flight Center
Scott Wiessinger (eMITS): Producer/editor
Scott Wiessinger (eMITS): Narrator
Francis Reddy (University of Maryland College Park):Science Writer
Duration: 2 minutes
Release Date: Jan. 29, 2026

#NASA #ESA #Astronomy #Space #Science #Stars #NeutronStars #GRBs #PleiadesSupercomputer #Supercomputers #ComputerSimulations #Cosmos #Universe #GSFC #UnitedStates #Europe #STEM #Education #Visualizations #Animations #HD #Video

NASA's Crew-12 Prepares for Launch | International Space Station

NASA's Crew-12 Prepares for Launch | International Space Station

The four members of NASA's SpaceX Crew-12 mission to the International Space Station pose together for a crew portrait in their blue flight suits at SpaceX headquarters in Hawthorne, California. From left are, Roscosmos cosmonaut and Mission Specialist Andrey Fedyaev of Russia, NASA astronauts Jack Hathaway and Jessica Meir, Pilot and Commander respectively, and European Space Agency (ESA) astronaut and Mission Specialist Sophie Adenot of France.




The four members of NASA's SpaceX Crew-12 mission to the International Space Station pose together for an official crew portrait. From left are, Roscosmos cosmonaut and Mission Specialist Andrey Fedyaev of Russia, NASA astronauts Jessica Meir and Jack Hathaway, Commander and Pilot respectively, and European Space Agency (ESA) astronaut and Mission Specialist Sophie Adenot of France.

Crew-12 Mission emblem
Expedition 75 Mission emblem

The four crew members of NASA’s SpaceX Crew-12 mission began their routine two-week quarantine on Wednesday, January 28, 2026, at NASA’s Johnson Space Center in Houston ahead of their upcoming launch to the International Space Station.

The earliest opportunity for Crew-12 to launch to the orbital complex is 6 a.m. EST Wednesday, Feb. 11, from Space Launch Complex 40 at Cape Canaveral in Florida. The next available launch opportunities are 5:38 a.m. on Thursday, February 12, and 5:15 a.m. on Friday, Feb. 13. NASA continues working toward potential launch windows for two important crewed missions this February: Artemis II and Crew-12. The agency will make any decisions on the best launch opportunity for each mission closer to flight.

Crew-12 will carry NASA astronauts Jessica Meir and Jack Hathaway, European Space Agency (ESA) astronaut Sophie Adenot of France, and Roscosmos cosmonaut Andrey Fedyaev of Russia to the orbiting laboratory. They are scheduled to travel Friday, Feb. 6, from Houston to the agency’s Kennedy Space Center in Florida, where they will remain in quarantine while conducting prelaunch operations.

Crew quarantine began during Apollo to reduce preflight illnesses and prevent subsequent symptoms during flight. During Crew 12’s quarantine, contact with other people is limited, and most interactions are handled remotely. Family members and select mission personnel undergo medical screening and must be cleared before interacting with the crew.

Before quarantine, the team also completed the crew equipment interface test on Jan. 12. The daylong exercise included crew members putting on their spacesuits, entering the SpaceX Dragon spacecraft, conducting suit leak checks, and confirming seat fitting. They also familiarized themselves with the spacecraft’s interior, completed communications checkouts, and listened to the Dragon’s fans and pumps to prepare for sounds they will hear during the flight to the orbiting laboratory.

Follow Expedition 74:

Expedition 74 Crew
Station Commander: Mike Fincke (NASA)
JAXA Flight Engineer (Japan): Kimiya Yui
Roscosmos (Russia) Flight Engineers: Oleg Platonov, Sergey-Kud Sverchkov, Sergei Mikaev
NASA Flight Engineers: Zena Cardman, Chris Williams

An international partnership of space agencies provides and operates the elements of the International Space Station (ISS). The principals are the space agencies of the United States, Russia, Europe, Japan, and Canada.

Image Credits: SpaceX, NASA's Johnson Space Center (JSC)
Release Date: Jan. 28, 2026

#NASA #Space #ISS #SpaceX #NASASpaceXCrew12 #SpaceXCrew12 #SpaceXDragonSpacecraft #Astronauts #JessicaMeir #JackHathaway #SophieAdenot #France #Europe #ESA #Cosmonauts #AndreyFedyaev #Russia #Россия #Roscosmos #Роскосмос #HumanSpaceflight #InternationalCooperation #Expedition75 #UnitedStates #STEM #Education